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Abstract-This work describes the solution in terms of the energy of the mixed boundary problem,
formulated for the elastic body subjected to prescribed boundary displacements field. The extremum
theorems herein proved are particular corollaries of the classical reciprocity theorems, Let us
consider a part, oVp, of the unconstrained boundary containing point P on which a displacement
field Up shall be prescribed. The displacement is produced by tractions acting on a part, oVQ , of the
unconstrained boundary containing a point Q and disjoined from oVp, The strain energy of the
body in this elastic state is greater than the strain energy produced by boundary forces acting on
oVp and creating the same displacement field Up there. The lower bound theorem herein proved
gives a quantification of Boussinesque's local perturbation principle and a measure of the strain
energy related to local action. The theorem applies both for structures and solids.

I. INTRODUCTION

The local perturbation principle introduced by BOUssinesque (1885) and Love (1944) is
very important in the theory of elasticity. It states that the effect produced by a field of
forces applied in the neighbourhood ofa point Q ofan elastic body rapidly decreases as we
move away from point Q. The principle oflocal perturbation perfectly fits the fundamental
solution introduced by Kelvin and Boussinesque for unbounded elastic bodies, and the
foundation of the assumption ofasymptotic regularity formulated by Kellog (1954) for the
solution of potential problems related to the presence of a point source. The Saint Venant
equivalence principle describes the particular application of Boussinesque's principle to
cylindrical bodies.

This work proves an extremum principle for strain energy applied to a class of elastic
states of linearly elastic bodies, characterized by prescribed values for displacement field Up

on the points of a limited boundary region avp containing a point P, generated by force
fields acting on a portion fJ VQ• For this purpose we shall use the concept ofGreen's function
or influence fun~tion of the displacement by applied forces.

The forces producing the prescribed displacement field shall be continuous tractions
applied to regular parts fJVQ of the unconstrained boundary of the body. In the case of
non-regular actions it is assumed that both the tractions and the displacements belong to
the space L 2(aV) of the square integrable functions over fJV; the fJVp and aVQ parts ofav
must be of Lipschitz type, i.e. the cone of the normals on each point exists. In the case of
structures which a regular and invertible influence function for concentrated forces can be
defined for, i.e. in those cases where the problem can be formulated in terms of generalized
forces and displacements in a one-to-one invertible relation the theorem is valid and shows
a more immediate algebraic deduction.

2. THE MINIMUM THEOREM FOR LOCAL ACTION IN STRUCTURES

For the sake of a clearer presentation, the deduction of the theorem in the case of
generalized actions is introduced first (Minutolo and Nunziante, 1992). Elastic systems
are taken into consideration, whose formulation allows the definition of a continuous
displacement influence function for concentrated loads. The concentrated load introduced
in this paragraph is meant as a generalized action, i.e. as a resultant of the actions distributed
on given areas. For the sake ofsimplicity we shall be refering to fixed constraint structures.

t This work is dedicated to the memory of Professor Vincenzo Franciosi.
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Fig. I.

An elastic structure S (Fig. I) is examined, which the influence function GPQ for the
displacement on point P by effect of a concentrated force applied on Q is defined for. GpQ

has a matrix feature and is regularly symmetrical and biunivocal by assumption for any
pair of points P and Q belonging to S. Therefore GpQ must be a symmetrical and positively
defined matrix.

The force fQ i= 0 acting on Q produces the displacement Up on P which is given by:

(1)

Moreover on its application point Q the force fQ produces a displacement equal to:

which does not vanish.
The strain energy of the structure S can be obtained through Clapeyron's Theorem

and is given by the following relation:

(2)

At this point a force fp acts on point P of the body which produces a displacement in P
opposite to the one Up given by eqn (1), and thus equal to [-up] (Fig. 2).

The force fp to be applied on P to obtain the displacement -Up can be calculated
through the influence function Gpp by means of:

This elastic state corresponding to the force fp acting on P is associated with the strain
energy, the value of which is:

(3)

Fig. 2.
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If both forces fQ and fp above act on the structure, the following displacement values are
obtained on points P and Q :

Up = Gppfp+ GpQfQ = 0,

~ = GQpfp+ GQQfQ,

and the strain energy for such an elastic state of the structure is given by:

WPQ = !{fp ' Up +fQ' uQ} = !fQ' uQ

= !{fQ·GQQfQ+fQ·GQpfp}. (4)

Bearing in mind that the term GPQfQ represents the displacement Up in eqn (I), opposite
that produced by fp and that the influence function G is symmetrical, the second term on
the right-hand side of (4) can be rewritten as follows:

(5)

Comparing (4) with (2), (3) and (5) we obtain the following expression for the strain energy
WPQ:

(6)

Due to the non-negativeness of WPQ we actually have:

(7)

It can therefore be maintained that the strain energy of an elastic linear homogeneous
material structure subjected to a system of two concentrated forces applied on two points
P and Q and producing null resultant displacement on P, is given by the difference between
the strain energies related to separately applied systems of forces.

On the other hand the strain energy Wp related to displacement - Up in eqn (3) due
to fp, is equal to the one corresponding to the displacement Up generated by the force - fp
acting on P. At this point eqn (7) takes on the meaning as expressed in the following:

Minimum theorem. The strain energy necessary to produce a given displacement Up on
a point P on the structure through a concentratedforce acting on any other point Q presents
its proper minimum corresponding to the application ofaforce exactly on P.

3. THE LOWER BOUND THEOREM FOR LOCAL ACTION ON BODIES

For the purpose of applying part of the results above to a body treated according to
the modern elasticity theory, next a linearly elastic body V with a suitably regular boundary
aV is taken into consideration according to the usual assumptions (Sternberg and Eubanks,
1955; Villaggio, 1977; Gurtin, 1973). The boundary av shall be partitioned into aVf and
aVu ' Forces shall be allocated on aVf • For the sake of simplicity, fixed constraints shall be
considered on aVu :

u= 0,

As already mentioned, the boundary av is considered to be duly regular, so as to give a
sense to the integral equations introduced. Moreover we assume that all parts of aV taken
into consideration have a non-null measure.

Let's consider a point Q and a subset aVQ offree boundary aVf containing Q. On the
part aVQ c aVf a system of tractions fQ:F 0 square integrable over aVQ is applied; on
(avr\Ovq ) tractions shall be null. Suppose there exist Green's functions for forces applied
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Fig. 3.

on XE V of the displacement of the point yE V which will be denoted by g(y, x). By
hypothesis it represents a continuous solution in (V\{x}) ofNavier's equation for vanishing
volume forces and respects the boundary conditions over 0Vu'

Through function g it is possible to determine the displacement field of point y E V
produced by tractions fQacting on 0VQas follows (Fig. 3) :

u(y) = IV
Q

g(Y,x)fQ(x) dS(x), yE V, xEoV. (8)

Because the introduced functions are square integrable it is possible to calculate the strain
energy of the body V under the prescribed forces, which is given by:

WQ = ~ r fQ(y) [r g(y, x)fQ(x) dS(X)] dS(y)
JavQ JavQ

and is positive Vf =f. 0.
The following is a more compact form of eqn (9) :t

(9)

(10)

Let's now examine a part oVp of the boundary oVrcontaining point P, disjoined from oVQ ,

and let's apply on 0Vp a field of forces fp defined as follows (Fig. 4) :

fp(x)=f.O, XEOVp,

fp(x) = 0, XE {oVr\oVp }.

This field of forces produces the following displacement in V:

u(y) = Iv
p

g(y, x)fp(x) dS(x) = Gfp, YE V, XE0Vp ,

the strain energy associated to this elastic solution is :

(11 )

(12)

t The symbol ( . , . ) stands for the inner product between elements of force and displacement spaces. The symbol
Gf indicates the linear transformation as defined by (8) which g(y, x) operates on f.
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Equation (II) for a prescribed field of forces fp defines a displacement field u in the body
under investigation. If instead, the displacement field u(y) e L 2(oVp ) not vanishing on 0Vp

is prescribed, since the kernel g(y, x) of this equation is symmetrical and geL 2(oVp ), eqn
(II) becomes a Fredholm equation of the first kind in the unknown fp •

Let's assume that the problem under investigation admits a solution fl :The fl belongs
to space L 2 and it is the only solution to eqn (II), provided the kernel g is complete in 0 Vp

(Smirnov, 1992). The completeness of the kernel is assured if the homogeneous equation
associated to (11)

r g(x, y)fp dS(x) = 0JovP

admits only the trivial solution.
With reference to the elastic problem implying the action of forces - fQ on the part

oVQ , (8) gives the displacement field Up on the part 0Vp :

Up = -GfQ• (13)

Let's now take into consideration the second elastic problem concerning forces applied only
on oVp , able to produce the displacement given by (13) on oVp • In consideration of the
above, the inverted form of (II) gives the forces fl which in this case need to be applied
on oVp :

For the two elastic problems as defined above, through (13) and (14) we obtain:

- r g(y, x)fo(x) ds(x) = r g(y, x)fP*(x) ds(x).
1~ 1~

The strain energy related to the second of problems introduced above is expressed by:

(14)

(15)

(16)

Finally, let's consider the third elastic problem where the tractions respect the following
relations:

{

f(X) = fo(x) '" 0, xeoVQ ,

f= f(x) =fp*(x) ¥O, xeoVp ,

f(x) = 0, xeoVr\{oVp U oVo}.
(17)

We immediately notice that the displacement field produced by the application of tractions
f presents identically vanishing values on 0Vp ; this problem is associated with the strain
energy given by :
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W = ~ (f, u) = ~ i/(y) • [iv g(y, x)f(y) dS(X)] dS(y)

= ~ iV
Q

[f(y)], [ive g(y, x)fp*(x) dS(x) +iV
Q

g(y, x)fQ(x) dS(X)] dS(y). (18)

The term in square brackets in (18) represents the displacement on avQ produced by the
application of the two fields of forces fQand fp*.

If we perform the decomposition by summation of the integral in (18), we obtain the
following expression:

W = ~[r fQ(y) r g(y, x)fP*(x) dS(x) dS(y)JovQ JovP

+ iV
Q

fQ(y) iV
Q

g(y, x)fQ(x) dS(x) dS(y)1 (19)

The symmetry of the kernel g(y, x) allows us to recognize that the first addendum in (19)
has a value equal to - Wp:

~21 r fQ(y) [r g(y, x)fP*(x) dS(X)] dS(y)
JovQ JovP

= ~ r fP*(y) [r g(y, x)fQ(x) dS(X)] dS(y) = - Wp, (20)
Jc1~e JavQ

and that the second addendum in (19) has a value WQ .

We obtain:

(21)

Since the left-hand side of (21) must be positive, we obtain the pursued lower bound for
WQ

(22)

Similar considerations to those at the end of the previous paragraph apply to the case dealt
with in this one. Therefore (22) takes the following meaning:

Lower bound theorem. With reference to the elastic solutions characterized by dis
placement fields having a prescribed value Up on the part a vpeaVeof the free boundary and
generated by suitable fields of tractions acting on any part aVQ caVe disjoined from avp ,

the energy value Wp constitutes a lower bound of the strain energy WQ above; where Wp

corresponds to the elastic problem requesting the application of the tractions on aVp and
generating the same displacements field Up there.

This work allows us to tackle some of the issues (Sternberg and Eubanks, 1955; Maier,
1991) concerning the limit case of concentrated forces acting on the boundary of the body.

4. CONCLUSIONS

The above results are particular corollaries of classical reciprocity theorems. The
extremum theorems might be seen in relation to the criteria ofasymptotic convergence of the
discretized form of some types of boundary integral equations concerning elastic problems
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(Guarracino et al., 1991). It is noteworthy that the well-conditioned leading diagonal of the
matrix originates from the prevalence of the strain energy related to the collocation force.

Finally, by means of the energy theorems above, it could be possible to state that the
properties of positivity and symmetry of operators which don't exist in the Boundary
Elements theory, hold definitively when the mesh improves.
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